3.348 \(\int \frac{\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=153 \[ -\frac{11 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{4 a^{3/2} d}+\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{a^{3/2} d}+\frac{5 \cot (c+d x)}{4 a d \sqrt{a \sin (c+d x)+a}}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a \sin (c+d x)+a}} \]

[Out]

(-11*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*a^(3/2)*d) + (2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos
[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(3/2)*d) + (5*Cot[c + d*x])/(4*a*d*Sqrt[a + a*Sin[c + d*x]]
) - (Cot[c + d*x]*Csc[c + d*x])/(2*a*d*Sqrt[a + a*Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.544084, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2874, 2984, 2985, 2649, 206, 2773} \[ -\frac{11 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{4 a^{3/2} d}+\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{a^{3/2} d}+\frac{5 \cot (c+d x)}{4 a d \sqrt{a \sin (c+d x)+a}}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-11*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*a^(3/2)*d) + (2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos
[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(3/2)*d) + (5*Cot[c + d*x])/(4*a*d*Sqrt[a + a*Sin[c + d*x]]
) - (Cot[c + d*x]*Csc[c + d*x])/(2*a*d*Sqrt[a + a*Sin[c + d*x]])

Rule 2874

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/b^2, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /;
 FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[n, 0])

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx &=\frac{\int \frac{\csc ^3(c+d x) (a-a \sin (c+d x))}{\sqrt{a+a \sin (c+d x)}} \, dx}{a^2}\\ &=-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a+a \sin (c+d x)}}+\frac{\int \frac{\csc ^2(c+d x) \left (-\frac{5 a^2}{2}+\frac{3}{2} a^2 \sin (c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx}{2 a^3}\\ &=\frac{5 \cot (c+d x)}{4 a d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a+a \sin (c+d x)}}+\frac{\int \frac{\csc (c+d x) \left (\frac{11 a^3}{4}-\frac{5}{4} a^3 \sin (c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx}{2 a^4}\\ &=\frac{5 \cot (c+d x)}{4 a d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a+a \sin (c+d x)}}+\frac{11 \int \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx}{8 a^2}-\frac{2 \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx}{a}\\ &=\frac{5 \cot (c+d x)}{4 a d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a+a \sin (c+d x)}}-\frac{11 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{4 a d}+\frac{4 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{a d}\\ &=-\frac{11 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{4 a^{3/2} d}+\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{a^{3/2} d}+\frac{5 \cot (c+d x)}{4 a d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 3.58916, size = 309, normalized size = 2.02 \[ \frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3 \left (12 \tan \left (\frac{1}{4} (c+d x)\right )+12 \cot \left (\frac{1}{4} (c+d x)\right )-\csc ^2\left (\frac{1}{4} (c+d x)\right )+\sec ^2\left (\frac{1}{4} (c+d x)\right )-\frac{24 \sin \left (\frac{1}{4} (c+d x)\right )}{\cos \left (\frac{1}{4} (c+d x)\right )-\sin \left (\frac{1}{4} (c+d x)\right )}+\frac{24 \sin \left (\frac{1}{4} (c+d x)\right )}{\sin \left (\frac{1}{4} (c+d x)\right )+\cos \left (\frac{1}{4} (c+d x)\right )}+\frac{2}{\left (\cos \left (\frac{1}{4} (c+d x)\right )-\sin \left (\frac{1}{4} (c+d x)\right )\right )^2}-\frac{2}{\left (\sin \left (\frac{1}{4} (c+d x)\right )+\cos \left (\frac{1}{4} (c+d x)\right )\right )^2}-(128+128 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (c+d x)\right )-1\right )\right )-44 \log \left (-\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )+1\right )+44 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )-\cos \left (\frac{1}{2} (c+d x)\right )+1\right )-24\right )}{32 d (a (\sin (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(-24 - (128 + 128*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 +
Tan[(c + d*x)/4])] + 12*Cot[(c + d*x)/4] - Csc[(c + d*x)/4]^2 - 44*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]
] + 44*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + Sec[(c + d*x)/4]^2 + 2/(Cos[(c + d*x)/4] - Sin[(c + d*x)
/4])^2 - (24*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] - Sin[(c + d*x)/4]) - 2/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4])
^2 + (24*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4]) + 12*Tan[(c + d*x)/4]))/(32*d*(a*(1 + Sin[c +
 d*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.985, size = 164, normalized size = 1.1 \begin{align*}{\frac{1+\sin \left ( dx+c \right ) }{4\, \left ( \sin \left ( dx+c \right ) \right ) ^{2}\cos \left ( dx+c \right ) d}\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) } \left ( 3\,\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{7/2}-5\, \left ( -a \left ( \sin \left ( dx+c \right ) -1 \right ) \right ) ^{3/2}{a}^{5/2}+8\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{4} \left ( \sin \left ( dx+c \right ) \right ) ^{2}-11\,{a}^{4}{\it Artanh} \left ({\frac{\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }}{\sqrt{a}}} \right ) \left ( \sin \left ( dx+c \right ) \right ) ^{2} \right ){a}^{-{\frac{11}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^(3/2),x)

[Out]

1/4*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(3*(-a*(sin(d*x+c)-1))^(1/2)*a^(7/2)-5*(-a*(sin(d*x+c)-1))^(3/2)*
a^(5/2)+8*2^(1/2)*arctanh(1/2*(-a*(sin(d*x+c)-1))^(1/2)*2^(1/2)/a^(1/2))*a^4*sin(d*x+c)^2-11*a^4*arctanh((-a*(
sin(d*x+c)-1))^(1/2)/a^(1/2))*sin(d*x+c)^2)/a^(11/2)/sin(d*x+c)^2/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.85439, size = 1353, normalized size = 8.84 \begin{align*} \frac{11 \,{\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \,{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} - 9 \, a \cos \left (d x + c\right ) +{\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + \frac{16 \, \sqrt{2}{\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) +{\left (a \cos \left (d x + c\right )^{2} - a\right )} \sin \left (d x + c\right ) - a\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac{2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt{a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt{a}} - 4 \,{\left (5 \, \cos \left (d x + c\right )^{2} +{\left (5 \, \cos \left (d x + c\right ) + 7\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 7\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{16 \,{\left (a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d \cos \left (d x + c\right ) - a^{2} d +{\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/16*(11*(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)*sqrt(a)*log(
(a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c)
- 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x +
 c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 16*sqrt(2
)*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2 - a*cos(d*x + c) + (a*cos(d*x + c)^2 - a)*sin(d*x + c) - a)*log(-(cos(d
*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c)
+ 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt
(a) - 4*(5*cos(d*x + c)^2 + (5*cos(d*x + c) + 7)*sin(d*x + c) - 2*cos(d*x + c) - 7)*sqrt(a*sin(d*x + c) + a))/
(a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2 - a^2*d*cos(d*x + c) - a^2*d + (a^2*d*cos(d*x + c)^2 - a^2*d)*sin
(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**3/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.52186, size = 837, normalized size = 5.47 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*(sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(tan(1/2*d*x + 1/2*c)/(a^2*sgn(tan(1/2*d*x + 1/2*c) + 1)) - 6/(a^2*sgn
(tan(1/2*d*x + 1/2*c) + 1))) - (44*sqrt(2)*sqrt(a)*arctan((sqrt(2)*sqrt(a) + sqrt(a))/sqrt(-a)) - 96*sqrt(2)*s
qrt(a)*arctan(sqrt(a)/sqrt(-a)) - 22*sqrt(2)*sqrt(-a)*log(sqrt(2)*sqrt(a) + sqrt(a)) + 66*sqrt(a)*arctan((sqrt
(2)*sqrt(a) + sqrt(a))/sqrt(-a)) - 128*sqrt(a)*arctan(sqrt(a)/sqrt(-a)) - 33*sqrt(-a)*log(sqrt(2)*sqrt(a) + sq
rt(a)) - 30*sqrt(2)*sqrt(-a) - 38*sqrt(-a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/(2*sqrt(2)*sqrt(-a)*a^(3/2) + 3*sqrt
(-a)*a^(3/2)) - 32*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 +
 a) + sqrt(a))/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c) + 1)) + 22*arctan(-(sqrt(a)*tan(1/2*d*x + 1/2*c)
 - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c) + 1)) - 11*log(abs(-sqrt
(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/(a^(3/2)*sgn(tan(1/2*d*x + 1/2*c) + 1)) + 2*((
sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^3 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(
a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(a) + (sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))
*a + 6*a^(3/2))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a)^2*a*sgn(tan(1/2*d
*x + 1/2*c) + 1)))/d